Q.P.Code: 23CS0902

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech. II Year II Semester Regular Examinations July/August-2025 **MACHINE LEARNING**

		(Common to CSM, CAD & CAI)	3.5						
Tim	e: (3 Hours PART-A	Max.	Mark	s: 70				
		(Answer all the Questions $10 \times 2 = 20$ Marks)							
1	a	What are the advantages of Machine Learning?	CO1	L1	2M				
	b	Infer Label Dataset in ML.	CO1	L2	2M				
	c	List out the performance measures of Classification.	CO ₂	L1	2M				
	d	Define MAE and R2.	CO ₂	L1	2M				
	e	Outline the feature of Naive Bayes Classifier.	CO ₃	L2	2M				
	f	State one key difference between decision trees used for classification	CO3	L1	2M				
		and for regression.	604	T 4	43.5				
	g	Recall Support Vector Machines.	CO4	L1	2M				
	h	What is the main objective of the Perceptron Learning Algorithm?	CO4	L1	2M				
	i	Interpret Soft Clustering. Give an example.	CO ₅	L2	2M				
	j	What is Matrix Factorization in clustering?	CO ₅	L1	2M				
		PART-B							
(Answer all Five Units $5 \times 10 = 50$ Marks)									
		UNIT-I							
2	a	Outline the applications of Machine Learning.	CO ₁	L2	5M				
	b	Explain the concepts of Reinforcement Algorithm.	CO ₁	L2	5M				
		OR							
3	a	Discuss about various types of Data.	CO1	L2	5M				
	b	Explain about feature engineering in Machine Learning.	CO ₁	L2	5M				
		UNIT-II							
4		A bank wants to classify customers as "Low-Risk" or "High-Risk" for							

A bank wants to classify customers as "Low-Risk" or "High-Risk" loans. Classify Customer E using Manhattan Distance and Radius CO2 L3 10M Distance Nearest Neighbour Algorithm. Assume suitable radius.

Customer	"			Loan Amount (Rupees)	Risk Level
A	25	30,000	700	10,000	Low
В	45	80,000	600	40,000	High
С	35	50,000	750	20,000	Low
D	55	90,000	580	50,000	High
E (New)	40	60,000	680	25,000	

OR

5 Identify the steps involved in K-Nearest Neighbors algorithm. Give CO2 L3 10M Example.

UNIT-III

What is the Naive Bayes Classifier? Explain the assumption of class CO3 L2 6 10Mconditional independence and how it simplifies computation.

_		_	
"	M	D	
		ĸ	

Describe the steps involved in Decision Tree is built for regression with CO3 10M 7 one example. UNIT-IV a Outline the steps involved in training a Perceptron classifier with a simple CO5 **6M** example. **b** Summarize Kernel Trick in SVM with an example. **CO5** L2 **4M** Explain the Backpropagation algorithm for training an MLP. Include CO5 **10M** 9 forward pass, error calculation, and weight update steps. UNIT-V What is clustering? Explain the types of clustering methods with CO6 10M 10 simple examples. **OR**

*** END ***

Describe the steps involved in K-Means clustering algorithm. Give CO6

11

example.

10M